Home

convergencia baño Hambre znse band gap protestante galería En el nombre

Perspective on synthesis, device structures, and printing processes for  quantum dot displays
Perspective on synthesis, device structures, and printing processes for quantum dot displays

Type-II Core/Shell CdS/ZnSe Nanocrystals: Synthesis, Electronic Structures,  and Spectroscopic Properties
Type-II Core/Shell CdS/ZnSe Nanocrystals: Synthesis, Electronic Structures, and Spectroscopic Properties

Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS:  Applied Physics Letters: Vol 101, No 7
Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS: Applied Physics Letters: Vol 101, No 7

Highly efficient quantum dot-sensitized TiO 2 solar cells based on  multilayered semiconductors (ZnSe/CdS/CdSe) - Nanoscale (RSC Publishing)  DOI:10.1039/C4NR06935H
Highly efficient quantum dot-sensitized TiO 2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe) - Nanoscale (RSC Publishing) DOI:10.1039/C4NR06935H

Frontiers | Bandgap Engineering of Indium Phosphide-Based Core/Shell  Heterostructures Through Shell Composition and Thickness
Frontiers | Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness

Croissance catalysée de nanofils de ZnSe avec boîtes quantiques de CdSe
Croissance catalysée de nanofils de ZnSe avec boîtes quantiques de CdSe

Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting  diodes - ScienceDirect
Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting diodes - ScienceDirect

Band gap of ZnSe nanocrystals deposited at temperature 318K at... |  Download Scientific Diagram
Band gap of ZnSe nanocrystals deposited at temperature 318K at... | Download Scientific Diagram

Materials | Free Full-Text | Tuning the Optical Band Gap of Semiconductor  Nanocomposites—A Case Study with ZnS/Carbon | HTML
Materials | Free Full-Text | Tuning the Optical Band Gap of Semiconductor Nanocomposites—A Case Study with ZnS/Carbon | HTML

Pushing the Band Gap Envelope of Quasi-Type II Heterostructured  Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells
Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells

Energy band structure diagram for ZnSe/ZnO nano-heterostructures | Download  Scientific Diagram
Energy band structure diagram for ZnSe/ZnO nano-heterostructures | Download Scientific Diagram

Role of magnesium in band gap engineering of sub-monolayer type-II ZnTe  quantum dots embedded in ZnSe: Journal of Applied Physics: Vol 110, No 3
Role of magnesium in band gap engineering of sub-monolayer type-II ZnTe quantum dots embedded in ZnSe: Journal of Applied Physics: Vol 110, No 3

Zinc selenide semiconductor: synthesis, properties and applications -  ScienceDirect
Zinc selenide semiconductor: synthesis, properties and applications - ScienceDirect

PDF] ELECTRONIC BAND STRUCTURE OF THE ORDERED Zn0.5Cd0.5Se ALLOY CALCULATED  BY THE SEMI-EMPIRICAL TIGHT-BINDING METHOD CONSIDERING SECOND-NEAREST  NEIGHBOR ESTRUCTURA ELECTRÓNICA DE BANDAS DE LA ALEACIÓN | Semantic Scholar
PDF] ELECTRONIC BAND STRUCTURE OF THE ORDERED Zn0.5Cd0.5Se ALLOY CALCULATED BY THE SEMI-EMPIRICAL TIGHT-BINDING METHOD CONSIDERING SECOND-NEAREST NEIGHBOR ESTRUCTURA ELECTRÓNICA DE BANDAS DE LA ALEACIÓN | Semantic Scholar

The effect of Mn-doped ZnSe passivation layer on the performance of  CdS/CdSe quantum dot-sensitized solar cells
The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells

Band-gap engineering of ZnSe quantum dots via a non-TOP green synthesis by  use of organometallic selenium compound - ScienceDirect
Band-gap engineering of ZnSe quantum dots via a non-TOP green synthesis by use of organometallic selenium compound - ScienceDirect

mp-1190: ZnSe (Cubic, F-43m, 216)
mp-1190: ZnSe (Cubic, F-43m, 216)

Band Gap Engineering of Zinc Selenide Thin Films Through Alloying with  Cadmium Telluride | ACS Applied Materials & Interfaces
Band Gap Engineering of Zinc Selenide Thin Films Through Alloying with Cadmium Telluride | ACS Applied Materials & Interfaces

Estimated band-gaps, band offsets, and hole energy levels of the (a)... |  Download Scientific Diagram
Estimated band-gaps, band offsets, and hole energy levels of the (a)... | Download Scientific Diagram

Computed band structures of optimized ph-ZnSe (left panel) and t-ZnSe... |  Download Scientific Diagram
Computed band structures of optimized ph-ZnSe (left panel) and t-ZnSe... | Download Scientific Diagram

Recent Advances in Zinc‐Containing Colloidal Semiconductor Nanocrystals for  Optoelectronic and Energy Conversion Applications - Chen - 2019 -  ChemElectroChem - Wiley Online Library
Recent Advances in Zinc‐Containing Colloidal Semiconductor Nanocrystals for Optoelectronic and Energy Conversion Applications - Chen - 2019 - ChemElectroChem - Wiley Online Library

Figure 2 | Anomalous Edge Emission from Zinc Selenide Heavily Doped with  Oxygen | SpringerLink
Figure 2 | Anomalous Edge Emission from Zinc Selenide Heavily Doped with Oxygen | SpringerLink

A Study by Ab-Initio Calculation of Structural and Electronic Properties of  Semiconductor Nanostructures Based on ZnSe
A Study by Ab-Initio Calculation of Structural and Electronic Properties of Semiconductor Nanostructures Based on ZnSe

Tailoring the Band Gap in the ZnS/ZnSe System: Solid Solutions by a  Mechanically Induced Self-Sustaining Reaction | Inorganic Chemistry
Tailoring the Band Gap in the ZnS/ZnSe System: Solid Solutions by a Mechanically Induced Self-Sustaining Reaction | Inorganic Chemistry